Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Melanie Rademeyer

School of Chemistry, University of KwaZuluNatal, Howard College Campus, Durban 4041, South Africa

Correspondence e-mail:
rademeyerm@ukzn.ac.za

Tetrakis(benzylammonium) tetranitratocuprate(II) dinitrate

The crystal structure of the title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)_{4}\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}$, consists of alternating organic and inorganic layers. The aromatic groups constitute the organic layer, while the nitrate ions, ammonium groups and $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ anions form the inorganic layer; the complex anions lie on twofold rotation axes. Strong classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the inorganic layer result in a complex two-dimensional hydrogen-bonding network.

Comment

The title compound, (I), is a double salt of benzylammonium nitrate and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, and its structure was determined as part of an ongoing study of organic-inorganic hybrid materials. No structure containing a Cu atom coordinated by four nitrate ligands could be located in the Cambridge Structural Database (November 2004, Version 5.26, August 2005 update; Allen, 2002). A structure containing a chlorotrinitratocopper(II) ion has been reported (Indira et al., 1993).

(I)

The asymmetric unit of (I) contains two benzylammonium cations, one independent nitrate anion and half of a $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ anion, with the Cu atom located on a twofold rotation axis. The molecular geometry and labelling employed are illustrated in Fig. 1.

The $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ ion deviates slightly from a squareplanar geometry, with the four coordinating O atoms deviating by $\pm 0.173 \AA$ from their mean plane. $\mathrm{Cu}-\mathrm{O}$ bond lengths are 1.972 (2) and 1.984 (2) \AA and cis $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles are 88.77 (8) and 92.07 (8) ${ }^{\circ}$.

As illustrated in Fig. 2, a crystal structure comprising organic and inorganic layers is formed. The organic layer contains the benzyl groups, and the inorganic layer is composed of isolated nitrate anions, ammonium groups and $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ anions.

In the organic layer, the aromatic groups pack to form three aromatic sub-layers. The benzyl groups forming the central sub-layer are interdigitated, but the outer benzyl groups are non-interdigitated. No $\pi-\pi$ stacking interactions are observed, with the centroid-to-centroid distance being 4.803 (8) \AA.

[^0]
Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.127$
Data-to-parameter ratio $=23.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 14 December 2005
Accepted 3 January 2006

Figure 1
The molecular structure of (I), showing the atomic numbering scheme and with displacement ellipsoids at the 50% probability level. Primed atoms are at the symmetry position $\left(-x, y, \frac{1}{2}-z\right)$.

The ammonium groups, isolated nitrate anions and $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ anions all interact via hydrogen bonding, with the ammonium groups acting as hydrogen-bond donors and the O atoms accepting hydrogen bonds. A complex twodimensional hydrogen-bonding sheet is formed parallel to the bc plane. Hydrogen-bonding interaction parameters are listed in Table 1, and the interactions are illustrated in Fig. 2. The two crystallographically non-equivalent benzylammonium cations do not display the same hydrogen-bonding interactions. The cation containing atom N 1 interacts with two different $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ anions via atom $\mathrm{H} 1 A$, with an isolated nitrate ion through atom $\mathrm{H} 1 B$, and with an isolated nitrate ion through atom $\mathrm{H} 1 C$. The second cation, which contains atom N 2 , interacts with an $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ anion and with an isolated nitrate ion through atom $\mathrm{N} 2 A$, with a different $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ anion through atom $\mathrm{H} 2 B$, and with two isolated nitrate anions and one $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ anion through atom H 2 C .

Experimental

Benzylammonium nitrate was prepared by the dropwise addition of concentrated nitric acid (70%, Aldrich) to a solution of benzylamine (99%, Saarchem; 20 ml) in chloroform (50 ml). The resulting precipitate was filtered. Tetrakis(benzylammonium) tetranitratocuprate(II) dinitrate was crystallized by dissolving stoichiometric amounts of benzylammonium nitrate and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \cdot 5 \mathrm{H}_{2} \mathrm{O}(98 \%$, Aldrich) (molar ratio 2:1) in water. Blue crystals of (I) formed on evaporation at room temperature.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{4}\left[\mathrm{Cu}\left(\mathrm{NO}_{4}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \\
& M_{r}=868.24 \\
& \text { Monoclinic, } C 2 / c \\
& a=30.79(3) \AA \\
& b=5.749(9) \AA \\
& c=21.293(14) \AA \\
& \beta=97.93(7)^{\circ} \\
& V=3733(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

Figure 2
A packing diagram for (I), viewed along the b axis. Hydrogen-bonding interactions are shown as dashed lines.

Data collection

Oxford Excalibur2 diffractometer ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.714, T_{\text {max }}=0.714$
17698 measured reflections 5929 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.127$
$S=1.08$
5929 reflections
258 parameters
H -atom parameters constrained
4603 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=32.0^{\circ}$
$h=-44 \rightarrow 45$
$k=-8 \rightarrow 5$
$l=-30 \rightarrow 31$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.071 P)^{2}\right. \\
& +0.4182 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.74 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.89	2.37	$2.997(3)$	127
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.89	2.48	$3.156(3)$	133
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 7^{\text {iii }}$	0.89	1.96	$2.803(4)$	158
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 5^{\text {iii }}$	0.89	2.66	$3.509(4)$	159
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 9$	0.89	2.13	$2.953(4)$	153
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 7$	0.89	2.42	$3.228(5)$	151
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{~N} 5$	0.89	2.65	$3.530(4)$	169
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.89	2.37	$3.096(5)$	139
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 8^{\mathrm{iii}}$	0.89	2.50	$3.036(4)$	120
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {ii }}$	0.89	2.54	$3.154(3)$	127
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3^{\mathrm{i}}$	0.89	2.12	$3.006(4)$	172
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{O}^{\mathrm{iv}}$	0.89	2.17	$2.891(3)$	138
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{O}^{\mathrm{v}}$	0.89	2.55	$3.072(3)$	118
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{O}^{\text {vi }}$	0.89	2.65	$3.136(3)$	116

Symmetry codes: (i) $-x, y,-z+\frac{3}{2}$; (ii) $-x, y-1,-z+\frac{3}{2}$; (iii) $x, y-1, z$; (iv) $-x,-y,-z+1$; (v) $-x,-y+1,-z+1$; (vi) $x,-y, z-\frac{1}{2}$.

All H atoms were placed in calculated positions, with aromatic $\mathrm{C}-$ H distances of $0.93 \AA$, methylene $\mathrm{C}-\mathrm{H}$ distances of $0.79 \AA$ and $\mathrm{N}-\mathrm{H}$

metal-organic papers

distances of $0.89 \AA$, and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atom ($1.5 U_{\text {eq }}$ for methyl groups).

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON and WinGX (Farrugia, 1999).

The author acknowledges funding received for this work from the University of KwaZulu-Natal Research Office, and
the National Research Foundation (Thuthuka, WiR, GUN:2054350).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Indira, A., Babu, A. M., Bellad, S. B., Sridhar, M. A. \& Shashidhara Prasad, J. (1993). Curr. Sci. 64, 247-252.

Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170. Oxford Diffraction Ltd., Abingdon, Oxford, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

